v17rx.h

Go to the documentation of this file.
00001 /*
00002  * SpanDSP - a series of DSP components for telephony
00003  *
00004  * v17rx.h - ITU V.17 modem receive part
00005  *
00006  * Written by Steve Underwood <steveu@coppice.org>
00007  *
00008  * Copyright (C) 2003 Steve Underwood
00009  *
00010  * All rights reserved.
00011  *
00012  * This program is free software; you can redistribute it and/or modify
00013  * it under the terms of the GNU Lesser General Public License version 2.1,
00014  * as published by the Free Software Foundation.
00015  *
00016  * This program is distributed in the hope that it will be useful,
00017  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00018  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00019  * GNU Lesser General Public License for more details.
00020  *
00021  * You should have received a copy of the GNU Lesser General Public
00022  * License along with this program; if not, write to the Free Software
00023  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
00024  *
00025  * $Id: v17rx.h,v 1.57 2008/09/18 14:59:30 steveu Exp $
00026  */
00027 
00028 /*! \file */
00029 
00030 #if !defined(_V17RX_H_)
00031 #define _V17RX_H_
00032 
00033 /*! \page v17rx_page The V.17 receiver
00034 \section v17rx_page_sec_1 What does it do?
00035 The V.17 receiver implements the receive side of a V.17 modem. This can operate
00036 at data rates of 14400, 12000, 9600 and 7200 bits/second. The audio input is a stream
00037 of 16 bit samples, at 8000 samples/second. The transmit and receive side of V.17
00038 modems operate independantly. V.17 is mostly used for FAX transmission over PSTN
00039 lines, where it provides the standard 14400 bits/second rate. 
00040 
00041 \section v17rx_page_sec_2 How does it work?
00042 V.17 uses QAM modulation, at 2400 baud, and trellis coding. Constellations with
00043 16, 32, 64, and 128 points are defined. After one bit per baud is absorbed by the
00044 trellis coding, this gives usable bit rates of 7200, 9600, 12000, and 14400 per
00045 second.
00046 
00047 V.17 specifies a training sequence at the start of transmission, which makes the
00048 design of a V.17 receiver relatively straightforward. The first stage of the
00049 training sequence consists of 256
00050 symbols, alternating between two constellation positions. The receiver monitors
00051 the signal power, to sense the possible presence of a valid carrier. When the
00052 alternating signal begins, the power rising above a minimum threshold (-43dBm0)
00053 causes the main receiver computation to begin. The initial measured power is
00054 used to quickly set the gain of the receiver. After this initial settling, the
00055 front end gain is locked, and the adaptive equalizer tracks any subsequent
00056 signal level variation. The signal is oversampled to 24000 samples/second (i.e.
00057 signal, zero, zero, signal, zero, zero, ...) and fed to a complex root raised
00058 cosine pulse shaping filter. This filter has been modified from the conventional
00059 root raised cosine filter, by shifting it up the band, to be centred at the nominal
00060 carrier frequency. This filter interpolates the samples, pulse shapes, and performs
00061 a fractional sample delay at the same time. 192 sets of filter coefficients are used
00062 to achieve a set of finely spaces fractional sample delays, between zero and
00063 one sample. By choosing every fifth sample, and the appropriate set of filter
00064 coefficients, the properly tuned symbol tracker can select data samples at 4800
00065 samples/second from points within 0.28 degrees of the centre and mid-points of
00066 each symbol. The output of the filter is multiplied by a complex carrier, generated
00067 by a DDS. The result is a baseband signal, requiring no further filtering, apart from
00068 an adaptive equalizer. The baseband signal is fed to a T/2 adaptive equalizer.
00069 A band edge component maximisation algorithm is used to tune the sampling, so the samples
00070 fed to the equalizer are close to the mid point and edges of each symbol. Initially
00071 the algorithm is very lightly damped, to ensure the symbol alignment pulls in
00072 quickly. Because the sampling rate will not be precisely the same as the
00073 transmitter's (the spec. says the symbol timing should be within 0.01%), the
00074 receiver constantly evaluates and corrects this sampling throughout its
00075 operation. During the symbol timing maintainence phase, the algorithm uses
00076 a heavier damping.
00077 
00078 The carrier is specified as 1800Hz +- 1Hz at the transmitter, and 1800 +-7Hz at
00079 the receiver. The receive carrier would only be this inaccurate if the link
00080 includes FDM sections. These are being phased out, but the design must still
00081 allow for the worst case. Using an initial 1800Hz signal for demodulation gives
00082 a worst case rotation rate for the constellation of about one degree per symbol.
00083 Once the symbol timing synchronisation algorithm has been given time to lock to the
00084 symbol timing of the initial alternating pattern, the phase of the demodulated signal
00085 is recorded on two successive symbols - once for each of the constellation positions.
00086 The receiver then tracks the symbol alternations, until a large phase jump occurs.
00087 This signifies the start of the next phase of the training sequence. At this
00088 point the total phase shift between the original recorded symbol phase, and the
00089 symbol phase just before the phase jump occurred is used to provide a coarse
00090 estimation of the rotation rate of the constellation, and it current absolute
00091 angle of rotation. These are used to update the current carrier phase and phase
00092 update rate in the carrier DDS. The working data already in the pulse shaping
00093 filter and equalizer buffers is given a similar step rotation to pull it all
00094 into line. From this point on, a heavily damped integrate and dump approach,
00095 based on the angular difference between each received constellation position and
00096 its expected position, is sufficient to track the carrier, and maintain phase
00097 alignment. A fast rough approximator for the arc-tangent function is adequate
00098 for the estimation of the angular error. 
00099 
00100 The next phase of the training sequence is a scrambled sequence of two
00101 particular symbols. We train the T/2 adaptive equalizer using this sequence. The
00102 scrambling makes the signal sufficiently diverse to ensure the equalizer
00103 converges to the proper generalised solution. At the end of this sequence, the
00104 equalizer should be sufficiently well adapted that is can correctly resolve the
00105 full QAM constellation. However, the equalizer continues to adapt throughout
00106 operation of the modem, fine tuning on the more complex data patterns of the
00107 full QAM constellation. 
00108 
00109 In the last phase of the training sequence, the modem enters normal data
00110 operation, with a short defined period of all ones as data. As in most high
00111 speed modems, data in a V.17 modem passes through a scrambler, to whiten the
00112 spectrum of the signal. The transmitter should initialise its data scrambler,
00113 and pass the ones through it. At the end of the ones, real data begins to pass
00114 through the scrambler, and the transmit modem is in normal operation. The
00115 receiver tests that ones are really received, in order to verify the modem
00116 trained correctly. If all is well, the data following the ones is fed to the
00117 application, and the receive modem is up and running. Unfortunately, some
00118 transmit side of some real V.17 modems fail to initialise their scrambler before
00119 sending the ones. This means the first 23 received bits (the length of the
00120 scrambler register) cannot be trusted for the test. The receive modem,
00121 therefore, only tests that bits starting at bit 24 are really ones.
00122 
00123 The V.17 signal is trellis coded. Two bits of each symbol are convolutionally coded
00124 to form a 3 bit trellis code - the two original bits, plus an extra redundant bit. It
00125 is possible to ignore the trellis coding, and just decode the non-redundant bits.
00126 However, the noise performance of the receiver would suffer. Using a proper
00127 trellis decoder adds several dB to the noise tolerance to the receiving modem. Trellis
00128 coding seems quite complex at first sight, but is fairly straightforward once you
00129 get to grips with it.
00130 
00131 Trellis decoding tracks the data in terms of the possible states of the convolutional
00132 coder at the transmitter. There are 8 possible states of the V.17 coder. The first
00133 step in trellis decoding is to find the best candidate constellation point
00134 for each of these 8 states. One of thse will be our final answer. The constellation
00135 has been designed so groups of 8 are spread fairly evenly across it. Locating them
00136 is achieved is a reasonably fast manner, by looking up the answers in a set of space
00137 map tables. The disadvantage is the tables are potentially large enough to affect
00138 cache performance. The trellis decoder works over 16 successive symbols. The result
00139 of decoding is not known until 16 symbols after the data enters the decoder. The
00140 minimum total accumulated mismatch between each received point and the actual
00141 constellation (termed the distance) is assessed for each of the 8 states. A little
00142 analysis of the coder shows that each of the 8 current states could be arrived at
00143 from 4 different previous states, through 4 different constellation bit patterns.
00144 For each new state, the running total distance is arrived at by inspecting a previous
00145 total plus a new distance for the appropriate 4 previous states. The minimum of the 4
00146 values becomes the new distance for the state. Clearly, a mechanism is needed to stop
00147 this distance from growing indefinitely. A sliding window, and several other schemes
00148 are possible. However, a simple single pole IIR is very simple, and provides adequate
00149 results.
00150 
00151 For each new state we store the constellation bit pattern, or path, to that state, and
00152 the number of the previous state. We find the minimum distance amongst the 8 new
00153 states for each new symbol. We then trace back through the states, until we reach the
00154 one 16 states ago which leads to the current minimum distance. The bit pattern stored
00155 there is the error corrected bit pattern for that symbol.
00156 
00157 So, what does Trellis coding actually achieve? TCM is easier to understand by looking
00158 at the V.23bis modem spec. The V.32bis spec. is very similar to V.17, except that it
00159 is a full duplex modem and has non-TCM options, as well as the TCM ones in V.17.
00160 
00161 V32bis defines two options for pumping 9600 bits per second down a phone line - one
00162 with and one without TCM. Both run at 2400 baud. The non-TCM one uses simple 16 point
00163 QAM on the raw data. The other takes two out of every four raw bits, and convolutionally
00164 encodes them to 3. Now we have 5 bits per symbol, and we need 32 point QAM to send the
00165 data.
00166 
00167 The raw error rate from simple decoding of the 32 point QAM is horrible compared to
00168 decoding the 16 point QAM. If a point decoded from the 32 point QAM is wrong, the likely
00169 correct choice should be one of the adjacent ones. It is unlikely to have been one that
00170 is far away across the constellation, unless there was a huge noise spike, interference,
00171 or something equally nasty. Now, the 32 point symbols do not exist in isolation. There
00172 was a kind of temporal smearing in the convolutional coding. It created a well defined
00173 dependency between successive symbols. If we knew for sure what the last few symbols
00174 were, they would lead us to a limited group of possible values for the current symbol,
00175 constrained by the behaviour of the convolutional coder. If you look at how the symbols
00176 were mapped to constellation points, you will see the mapping tries to spread those
00177 possible symbols as far apart as possible. This will leave only one that is pretty
00178 close to the received point, which must be the correct choice. However, this assumes
00179 we know the last few symbols for sure. Since we don't, we have a bit more work to do
00180 to achieve reliable decoding.
00181 
00182 Instead of decoding to the nearest point on the constellation, we decode to a group of
00183 likely constellation points in the neighbourhood of the received point. We record the
00184 mismatch for each - that is the distance across the constellation between the received
00185 point and the group of nearby points. To avoid square roots, recording x2 + y2 can be
00186 good enough. Symbol by symbol, we record this information. After a few symbols we can
00187 stand back and look at the recorded information.
00188 
00189 For each symbol we have a set of possible symbol values and error metric pairs. The
00190 dependency between symbols, created by the convolutional coder, means some paths from
00191 symbol to symbol are possible and some are not. It we trace back through the possible
00192 symbol to symbol paths, and total up the error metric through those paths, we end up
00193 with a set of figures of merit (or more accurately figures of demerit, since
00194 larger == worse) for the likelihood of each path being the correct one. The path with
00195 the lowest total metric is the most likely, and gives us our final choice for what we
00196 think the current symbol really is.
00197 
00198 That was hard work. It takes considerable computation to do this selection and traceback,
00199 symbol by symbol. We need to get quite a lot from this. It needs to drive the error rate
00200 down so far that is compensates for the much higher error rate due to the larger
00201 constellation, and then buys us some actual benefit. Well in the example we are looking
00202 at - V.32bis at 9600bps - it works out the error rate from the TCM option is like using
00203 the non-TCM option with several dB more signal to noise ratio. That's nice. The non-TCM
00204 option is pretty reasonable on most phone lines, but a better error rate is always a
00205 good thing. However, V32bis includes a 14,400bps option. That uses 2400 baud, and 6 bit
00206 symbols. Convolutional encoding increases that to 7 bits per symbol, by taking 2 bits and
00207 encoding them to 3. This give a 128 point QAM constellation. Again, the difference between
00208 using this, and using just an uncoded 64 point constellation is equivalent to maybe 5dB of
00209 extra signal to noise ratio. However, in this case it is the difference between the modem
00210 working only on the most optimal lines, and being widely usable across most phone lines.
00211 TCM absolutely transformed the phone line modem business.
00212 */
00213 
00214 /* Target length for the equalizer is about 63 taps, to deal with the worst stuff
00215    in V.56bis. */
00216 #define V17_EQUALIZER_PRE_LEN       8  /* This much before the real event */
00217 #define V17_EQUALIZER_POST_LEN      8  /* This much after the real event (must be even) */
00218 
00219 #define V17_RX_FILTER_STEPS         27
00220 
00221 /* We can store more trellis depth that we look back over, so that we can push out a group
00222    of symbols in one go, giving greater processing efficiency, at the expense of a bit more
00223    latency through the modem. */
00224 /* Right now we don't take advantage of this optimisation. */
00225 #define V17_TRELLIS_STORAGE_DEPTH   16
00226 #define V17_TRELLIS_LOOKBACK_DEPTH  16
00227 
00228 /*!
00229     V.17 modem receive side descriptor. This defines the working state for a
00230     single instance of a V.17 modem receiver.
00231 */
00232 typedef struct
00233 {
00234     /*! \brief The bit rate of the modem. Valid values are 7200 9600, 12000 and 14400. */
00235     int bit_rate;
00236     /*! \brief The callback function used to put each bit received. */
00237     put_bit_func_t put_bit;
00238     /*! \brief A user specified opaque pointer passed to the put_but routine. */
00239     void *put_bit_user_data;
00240 
00241     /*! \brief The callback function used to report modem status changes. */
00242     modem_rx_status_func_t status_handler;
00243     /*! \brief A user specified opaque pointer passed to the status function. */
00244     void *status_user_data;
00245 
00246     /*! \brief A callback function which may be enabled to report every symbol's
00247                constellation position. */
00248     qam_report_handler_t qam_report;
00249     /*! \brief A user specified opaque pointer passed to the qam_report callback
00250                routine. */
00251     void *qam_user_data;
00252 
00253     /*! \brief The route raised cosine (RRC) pulse shaping filter buffer. */
00254 #if defined(SPANDSP_USE_FIXED_POINT)
00255     int16_t rrc_filter[V17_RX_FILTER_STEPS];
00256 #else
00257     float rrc_filter[V17_RX_FILTER_STEPS];
00258 #endif
00259     /*! \brief Current offset into the RRC pulse shaping filter buffer. */
00260     int rrc_filter_step;
00261 
00262     /*! \brief The state of the differential decoder */
00263     int diff;
00264     /*! \brief The register for the data scrambler. */
00265     unsigned int scramble_reg;
00266     /*! \brief TRUE if the short training sequence is to be used. */
00267     int short_train;
00268     /*! \brief The section of the training data we are currently in. */
00269     int training_stage;
00270     /*! \brief A count of how far through the current training step we are. */
00271     int training_count;
00272     /*! \brief A measure of how much mismatch there is between the real constellation,
00273         and the decoded symbol positions. */
00274     float training_error;
00275     /*! \brief The value of the last signal sample, using the a simple HPF for signal power estimation. */
00276     int16_t last_sample;
00277     /*! \brief >0 if a signal above the minimum is present. It may or may not be a V.17 signal. */
00278     int signal_present;
00279     /*! \brief Whether or not a carrier drop was detected and the signal delivery is pending. */
00280     int carrier_drop_pending;
00281     /*! \brief A count of the current consecutive samples below the carrier off threshold. */
00282     int low_samples;
00283     /*! \brief A highest magnitude sample seen. */
00284     int16_t high_sample;
00285 
00286     /*! \brief The current phase of the carrier (i.e. the DDS parameter). */
00287     uint32_t carrier_phase;
00288     /*! \brief The update rate for the phase of the carrier (i.e. the DDS increment). */
00289     int32_t carrier_phase_rate;
00290     /*! \brief The carrier update rate saved for reuse when using short training. */
00291     int32_t carrier_phase_rate_save;
00292 #if defined(SPANDSP_USE_FIXED_POINTx)
00293     /*! \brief The proportional part of the carrier tracking filter. */
00294     float carrier_track_p;
00295     /*! \brief The integral part of the carrier tracking filter. */
00296     float carrier_track_i;
00297 #else
00298     /*! \brief The proportional part of the carrier tracking filter. */
00299     float carrier_track_p;
00300     /*! \brief The integral part of the carrier tracking filter. */
00301     float carrier_track_i;
00302 #endif
00303 
00304     /*! \brief A power meter, to measure the HPF'ed signal power in the channel. */    
00305     power_meter_t power;
00306     /*! \brief The power meter level at which carrier on is declared. */
00307     int32_t carrier_on_power;
00308     /*! \brief The power meter level at which carrier off is declared. */
00309     int32_t carrier_off_power;
00310 
00311     /*! \brief Current read offset into the equalizer buffer. */
00312     int eq_step;
00313     /*! \brief Current write offset into the equalizer buffer. */
00314     int eq_put_step;
00315     /*! \brief Symbol counter to the next equalizer update. */
00316     int eq_skip;
00317 
00318     /*! \brief The current half of the baud. */
00319     int baud_half;
00320 
00321 #if defined(SPANDSP_USE_FIXED_POINTx)
00322     /*! \brief The scaling factor accessed by the AGC algorithm. */
00323     float agc_scaling;
00324     /*! \brief The previous value of agc_scaling, needed to reuse old training. */
00325     float agc_scaling_save;
00326 
00327     /*! \brief The current delta factor for updating the equalizer coefficients. */
00328     float eq_delta;
00329     /*! \brief The adaptive equalizer coefficients. */
00330     complexi16_t eq_coeff[V17_EQUALIZER_PRE_LEN + 1 + V17_EQUALIZER_POST_LEN];
00331     /*! \brief A saved set of adaptive equalizer coefficients for use after restarts. */
00332     complexi16_t eq_coeff_save[V17_EQUALIZER_PRE_LEN + 1 + V17_EQUALIZER_POST_LEN];
00333     /*! \brief The equalizer signal buffer. */
00334     complexi16_t eq_buf[V17_EQUALIZER_PRE_LEN + 1 + V17_EQUALIZER_POST_LEN];
00335 
00336     /*! Low band edge filter for symbol sync. */
00337     int32_t symbol_sync_low[2];
00338     /*! High band edge filter for symbol sync. */
00339     int32_t symbol_sync_high[2];
00340     /*! DC filter for symbol sync. */
00341     int32_t symbol_sync_dc_filter[2];
00342     /*! Baud phase for symbol sync. */
00343     int32_t baud_phase;
00344 #else
00345     /*! \brief The scaling factor accessed by the AGC algorithm. */
00346     float agc_scaling;
00347     /*! \brief The previous value of agc_scaling, needed to reuse old training. */
00348     float agc_scaling_save;
00349 
00350     /*! \brief The current delta factor for updating the equalizer coefficients. */
00351     float eq_delta;
00352     /*! \brief The adaptive equalizer coefficients. */
00353     complexf_t eq_coeff[V17_EQUALIZER_PRE_LEN + 1 + V17_EQUALIZER_POST_LEN];
00354     /*! \brief A saved set of adaptive equalizer coefficients for use after restarts. */
00355     complexf_t eq_coeff_save[V17_EQUALIZER_PRE_LEN + 1 + V17_EQUALIZER_POST_LEN];
00356     /*! \brief The equalizer signal buffer. */
00357     complexf_t eq_buf[V17_EQUALIZER_PRE_LEN + 1 + V17_EQUALIZER_POST_LEN];
00358 
00359     /*! Low band edge filter for symbol sync. */
00360     float symbol_sync_low[2];
00361     /*! High band edge filter for symbol sync. */
00362     float symbol_sync_high[2];
00363     /*! DC filter for symbol sync. */
00364     float symbol_sync_dc_filter[2];
00365     /*! Baud phase for symbol sync. */
00366     float baud_phase;
00367 #endif
00368 
00369     /*! \brief The total symbol timing correction since the carrier came up.
00370                This is only for performance analysis purposes. */
00371     int total_baud_timing_correction;
00372 
00373     /*! \brief Starting phase angles for the coarse carrier aquisition step. */
00374     int32_t start_angles[2];
00375     /*! \brief History list of phase angles for the coarse carrier aquisition step. */
00376     int32_t angles[16];
00377     /*! \brief A pointer to the current constellation. */
00378 #if defined(SPANDSP_USE_FIXED_POINTx)
00379     const complexi16_t *constellation;
00380 #else
00381     const complexf_t *constellation;
00382 #endif
00383     /*! \brief A pointer to the current space map. There is a space map for
00384                each trellis state. */
00385     int space_map;
00386     /*! \brief The number of bits in each symbol at the current bit rate. */
00387     int bits_per_symbol;
00388 
00389     /*! \brief Current pointer to the trellis buffers */
00390     int trellis_ptr;
00391     /*! \brief The trellis. */
00392     int full_path_to_past_state_locations[V17_TRELLIS_STORAGE_DEPTH][8];
00393     /*! \brief The trellis. */
00394     int past_state_locations[V17_TRELLIS_STORAGE_DEPTH][8];
00395     /*! \brief Euclidean distances (actually the squares of the distances)
00396                from the last states of the trellis. */
00397 #if defined(SPANDSP_USE_FIXED_POINTx)
00398     uint32_t distances[8];
00399 #else
00400     float distances[8];
00401 #endif
00402     /*! \brief Error and flow logging control */
00403     logging_state_t logging;
00404 } v17_rx_state_t;
00405 
00406 #if defined(__cplusplus)
00407 extern "C"
00408 {
00409 #endif
00410 
00411 /*! Initialise a V.17 modem receive context.
00412     \brief Initialise a V.17 modem receive context.
00413     \param s The modem context.
00414     \param bit_rate The bit rate of the modem. Valid values are 7200, 9600, 12000 and 14400.
00415     \param put_bit The callback routine used to put the received data.
00416     \param user_data An opaque pointer passed to the put_bit routine.
00417     \return A pointer to the modem context, or NULL if there was a problem. */
00418 v17_rx_state_t *v17_rx_init(v17_rx_state_t *s, int bit_rate, put_bit_func_t put_bit, void *user_data);
00419 
00420 /*! Reinitialise an existing V.17 modem receive context.
00421     \brief Reinitialise an existing V.17 modem receive context.
00422     \param s The modem context.
00423     \param bit_rate The bit rate of the modem. Valid values are 7200, 9600, 12000 and 14400.
00424     \param short_train TRUE if a short training sequence is expected.
00425     \return 0 for OK, -1 for bad parameter */
00426 int v17_rx_restart(v17_rx_state_t *s, int bit_rate, int short_train);
00427 
00428 /*! Free a V.17 modem receive context.
00429     \brief Free a V.17 modem receive context.
00430     \param s The modem context.
00431     \return 0 for OK */
00432 int v17_rx_free(v17_rx_state_t *s);
00433 
00434 /*! Change the put_bit function associated with a V.17 modem receive context.
00435     \brief Change the put_bit function associated with a V.17 modem receive context.
00436     \param s The modem context.
00437     \param put_bit The callback routine used to handle received bits.
00438     \param user_data An opaque pointer. */
00439 void v17_rx_set_put_bit(v17_rx_state_t *s, put_bit_func_t put_bit, void *user_data);
00440 
00441 /*! Change the modem status report function associated with a V.17 modem receive context.
00442     \brief Change the modem status report function associated with a V.17 modem receive context.
00443     \param s The modem context.
00444     \param handler The callback routine used to report modem status changes.
00445     \param user_data An opaque pointer. */
00446 void v17_rx_set_modem_status_handler(v17_rx_state_t *s, modem_rx_status_func_t handler, void *user_data);
00447 
00448 /*! Process a block of received V.17 modem audio samples.
00449     \brief Process a block of received V.17 modem audio samples.
00450     \param s The modem context.
00451     \param amp The audio sample buffer.
00452     \param len The number of samples in the buffer.
00453     \return The number of samples unprocessed.
00454 */
00455 int v17_rx(v17_rx_state_t *s, const int16_t amp[], int len);
00456 
00457 /*! Get a snapshot of the current equalizer coefficients.
00458     \brief Get a snapshot of the current equalizer coefficients.
00459     \param s The modem context.
00460     \param coeffs The vector of complex coefficients.
00461     \return The number of coefficients in the vector. */
00462 #if defined(SPANDSP_USE_FIXED_POINTx)
00463 int v17_rx_equalizer_state(v17_rx_state_t *s, complexi_t **coeffs);
00464 #else
00465 int v17_rx_equalizer_state(v17_rx_state_t *s, complexf_t **coeffs);
00466 #endif
00467 
00468 /*! Get the current received carrier frequency.
00469     \param s The modem context.
00470     \return The frequency, in Hertz. */
00471 float v17_rx_carrier_frequency(v17_rx_state_t *s);
00472 
00473 /*! Get the current symbol timing correction since startup.
00474     \param s The modem context.
00475     \return The correction. */
00476 float v17_rx_symbol_timing_correction(v17_rx_state_t *s);
00477 
00478 /*! Get a current received signal power.
00479     \param s The modem context.
00480     \return The signal power, in dBm0. */
00481 float v17_rx_signal_power(v17_rx_state_t *s);
00482 
00483 /*! Set the power level at which the carrier detection will cut in
00484     \param s The modem context.
00485     \param cutoff The signal cutoff power, in dBm0. */
00486 void v17_rx_signal_cutoff(v17_rx_state_t *s, float cutoff);
00487 
00488 /*! Set a handler routine to process QAM status reports
00489     \param s The modem context.
00490     \param handler The handler routine.
00491     \param user_data An opaque pointer passed to the handler routine. */
00492 void v17_rx_set_qam_report_handler(v17_rx_state_t *s, qam_report_handler_t handler, void *user_data);
00493 
00494 #if defined(__cplusplus)
00495 }
00496 #endif
00497 
00498 #endif
00499 /*- End of file ------------------------------------------------------------*/

Generated on Tue Oct 7 20:25:49 2008 for spandsp by  doxygen 1.5.6