non-gpl-bits/g711.h

Go to the documentation of this file.
00001 /*
00002  * SpanDSP - a series of DSP components for telephony
00003  *
00004  * g711.h - In line A-law and u-law conversion routines
00005  *
00006  * Written by Steve Underwood <steveu@coppice.org>
00007  *
00008  * Copyright (C) 2001 Steve Underwood
00009  *
00010  *  Despite my general liking of the GPL, I place this code in the
00011  *  public domain for the benefit of all mankind - even the slimy
00012  *  ones who might try to proprietize my work and use it to my
00013  *  detriment.
00014  *
00015  * $Id: g711.h,v 1.1 2006/06/07 15:46:39 steveu Exp $
00016  */
00017 
00018 /*! \file */
00019 
00020 /*! \page g711_page A-law and mu-law handling
00021 Lookup tables for A-law and u-law look attractive, until you consider the impact
00022 on the CPU cache. If it causes a substantial area of your processor cache to get
00023 hit too often, cache sloshing will severely slow things down. The main reason
00024 these routines are slow in C, is the lack of direct access to the CPU's "find
00025 the first 1" instruction. A little in-line assembler fixes that, and the
00026 conversion routines can be faster than lookup tables, in most real world usage.
00027 A "find the first 1" instruction is available on most modern CPUs, and is a
00028 much underused feature. 
00029 
00030 If an assembly language method of bit searching is not available, these routines
00031 revert to a method that can be a little slow, so the cache thrashing might not
00032 seem so bad :(
00033 
00034 Feel free to submit patches to add fast "find the first 1" support for your own
00035 favourite processor.
00036 
00037 Look up tables are used for transcoding between A-law and u-law, since it is
00038 difficult to achieve the precise transcoding procedure laid down in the G.711
00039 specification by other means.
00040 */
00041 
00042 #if !defined(_G711_H_)
00043 #define _G711_H_
00044 
00045 #ifdef __cplusplus
00046 extern "C" {
00047 #endif
00048 
00049 #if defined(__i386__)
00050 /*! \brief Find the bit position of the highest set bit in a word
00051     \param bits The word to be searched
00052     \return The bit number of the highest set bit, or -1 if the word is zero. */
00053 static __inline__ int top_bit(unsigned int bits)
00054 {
00055     int res;
00056 
00057     __asm__ __volatile__(" movl $-1,%%edx;\n"
00058                          " bsrl %%eax,%%edx;\n"
00059                          : "=d" (res)
00060                          : "a" (bits));
00061     return res;
00062 }
00063 /*- End of function --------------------------------------------------------*/
00064 
00065 /*! \brief Find the bit position of the lowest set bit in a word
00066     \param bits The word to be searched
00067     \return The bit number of the lowest set bit, or -1 if the word is zero. */
00068 static __inline__ int bottom_bit(unsigned int bits)
00069 {
00070     int res;
00071 
00072     __asm__ __volatile__(" movl $-1,%%edx;\n"
00073                          " bsfl %%eax,%%edx;\n"
00074                          : "=d" (res)
00075                          : "a" (bits));
00076     return res;
00077 }
00078 /*- End of function --------------------------------------------------------*/
00079 #elif defined(__x86_64__)
00080 static __inline__ int top_bit(unsigned int bits)
00081 {
00082     int res;
00083 
00084     __asm__ __volatile__(" movq $-1,%%rdx;\n"
00085                          " bsrq %%rax,%%rdx;\n"
00086                          : "=d" (res)
00087                          : "a" (bits));
00088     return res;
00089 }
00090 /*- End of function --------------------------------------------------------*/
00091 
00092 static __inline__ int bottom_bit(unsigned int bits)
00093 {
00094     int res;
00095 
00096     __asm__ __volatile__(" movq $-1,%%rdx;\n"
00097                          " bsfq %%rax,%%rdx;\n"
00098                          : "=d" (res)
00099                          : "a" (bits));
00100     return res;
00101 }
00102 /*- End of function --------------------------------------------------------*/
00103 #else
00104 static __inline__ int top_bit(unsigned int bits)
00105 {
00106     int i;
00107     
00108     if (bits == 0)
00109         return -1;
00110     i = 0;
00111     if (bits & 0xFFFF0000)
00112     {
00113         bits &= 0xFFFF0000;
00114         i += 16;
00115     }
00116     if (bits & 0xFF00FF00)
00117     {
00118         bits &= 0xFF00FF00;
00119         i += 8;
00120     }
00121     if (bits & 0xF0F0F0F0)
00122     {
00123         bits &= 0xF0F0F0F0;
00124         i += 4;
00125     }
00126     if (bits & 0xCCCCCCCC)
00127     {
00128         bits &= 0xCCCCCCCC;
00129         i += 2;
00130     }
00131     if (bits & 0xAAAAAAAA)
00132     {
00133         bits &= 0xAAAAAAAA;
00134         i += 1;
00135     }
00136     return i;
00137 }
00138 /*- End of function --------------------------------------------------------*/
00139 
00140 static __inline__ int bottom_bit(unsigned int bits)
00141 {
00142     int i;
00143     
00144     if (bits == 0)
00145         return -1;
00146     i = 32;
00147     if (bits & 0x0000FFFF)
00148     {
00149         bits &= 0x0000FFFF;
00150         i -= 16;
00151     }
00152     if (bits & 0x00FF00FF)
00153     {
00154         bits &= 0x00FF00FF;
00155         i -= 8;
00156     }
00157     if (bits & 0x0F0F0F0F)
00158     {
00159         bits &= 0x0F0F0F0F;
00160         i -= 4;
00161     }
00162     if (bits & 0x33333333)
00163     {
00164         bits &= 0x33333333;
00165         i -= 2;
00166     }
00167     if (bits & 0x55555555)
00168     {
00169         bits &= 0x55555555;
00170         i -= 1;
00171     }
00172     return i;
00173 }
00174 /*- End of function --------------------------------------------------------*/
00175 #endif
00176 
00177 /* N.B. It is tempting to use look-up tables for A-law and u-law conversion.
00178  *      However, you should consider the cache footprint.
00179  *
00180  *      A 64K byte table for linear to x-law and a 512 byte table for x-law to
00181  *      linear sound like peanuts these days, and shouldn't an array lookup be
00182  *      real fast? No! When the cache sloshes as badly as this one will, a tight
00183  *      calculation may be better. The messiest part is normally finding the
00184  *      segment, but a little inline assembly can fix that on an i386, x86_64 and
00185  *      many other modern processors.
00186  */
00187  
00188 /*
00189  * Mu-law is basically as follows:
00190  *
00191  *      Biased Linear Input Code        Compressed Code
00192  *      ------------------------        ---------------
00193  *      00000001wxyza                   000wxyz
00194  *      0000001wxyzab                   001wxyz
00195  *      000001wxyzabc                   010wxyz
00196  *      00001wxyzabcd                   011wxyz
00197  *      0001wxyzabcde                   100wxyz
00198  *      001wxyzabcdef                   101wxyz
00199  *      01wxyzabcdefg                   110wxyz
00200  *      1wxyzabcdefgh                   111wxyz
00201  *
00202  * Each biased linear code has a leading 1 which identifies the segment
00203  * number. The value of the segment number is equal to 7 minus the number
00204  * of leading 0's. The quantization interval is directly available as the
00205  * four bits wxyz.  * The trailing bits (a - h) are ignored.
00206  *
00207  * Ordinarily the complement of the resulting code word is used for
00208  * transmission, and so the code word is complemented before it is returned.
00209  *
00210  * For further information see John C. Bellamy's Digital Telephony, 1982,
00211  * John Wiley & Sons, pps 98-111 and 472-476.
00212  */
00213 
00214 //#define ULAW_ZEROTRAP                 /* turn on the trap as per the MIL-STD */
00215 #define ULAW_BIAS        0x84           /* Bias for linear code. */
00216 
00217 /*! \brief Encode a linear sample to u-law
00218     \param linear The sample to encode.
00219     \return The u-law value.
00220 */
00221 static __inline__ uint8_t linear_to_ulaw(int linear)
00222 {
00223     uint8_t u_val;
00224     int mask;
00225     int seg;
00226 
00227     /* Get the sign and the magnitude of the value. */
00228     if (linear < 0)
00229     {
00230         linear = ULAW_BIAS - linear;
00231         mask = 0x7F;
00232     }
00233     else
00234     {
00235         linear = ULAW_BIAS + linear;
00236         mask = 0xFF;
00237     }
00238 
00239     seg = top_bit(linear | 0xFF) - 7;
00240 
00241     /*
00242      * Combine the sign, segment, quantization bits,
00243      * and complement the code word.
00244      */
00245     if (seg >= 8)
00246         u_val = (uint8_t) (0x7F ^ mask);
00247     else
00248         u_val = (uint8_t) (((seg << 4) | ((linear >> (seg + 3)) & 0xF)) ^ mask);
00249 #ifdef ULAW_ZEROTRAP
00250     /* Optional ITU trap */
00251     if (u_val == 0)
00252         u_val = 0x02;
00253 #endif
00254     return  u_val;
00255 }
00256 /*- End of function --------------------------------------------------------*/
00257 
00258 /*! \brief Decode an u-law sample to a linear value.
00259     \param ulaw The u-law sample to decode.
00260     \return The linear value.
00261 */
00262 static __inline__ int16_t ulaw_to_linear(uint8_t ulaw)
00263 {
00264     int t;
00265     
00266     /* Complement to obtain normal u-law value. */
00267     ulaw = ~ulaw;
00268     /*
00269      * Extract and bias the quantization bits. Then
00270      * shift up by the segment number and subtract out the bias.
00271      */
00272     t = (((ulaw & 0x0F) << 3) + ULAW_BIAS) << (((int) ulaw & 0x70) >> 4);
00273     return  (int16_t) ((ulaw & 0x80)  ?  (ULAW_BIAS - t)  :  (t - ULAW_BIAS));
00274 }
00275 /*- End of function --------------------------------------------------------*/
00276 
00277 /*
00278  * A-law is basically as follows:
00279  *
00280  *      Linear Input Code        Compressed Code
00281  *      -----------------        ---------------
00282  *      0000000wxyza             000wxyz
00283  *      0000001wxyza             001wxyz
00284  *      000001wxyzab             010wxyz
00285  *      00001wxyzabc             011wxyz
00286  *      0001wxyzabcd             100wxyz
00287  *      001wxyzabcde             101wxyz
00288  *      01wxyzabcdef             110wxyz
00289  *      1wxyzabcdefg             111wxyz
00290  *
00291  * For further information see John C. Bellamy's Digital Telephony, 1982,
00292  * John Wiley & Sons, pps 98-111 and 472-476.
00293  */
00294 
00295 #define ALAW_AMI_MASK       0x55
00296 
00297 /*! \brief Encode a linear sample to A-law
00298     \param linear The sample to encode.
00299     \return The A-law value.
00300 */
00301 static __inline__ uint8_t linear_to_alaw(int linear)
00302 {
00303     int mask;
00304     int seg;
00305     
00306     if (linear >= 0)
00307     {
00308         /* Sign (bit 7) bit = 1 */
00309         mask = ALAW_AMI_MASK | 0x80;
00310     }
00311     else
00312     {
00313         /* Sign (bit 7) bit = 0 */
00314         mask = ALAW_AMI_MASK;
00315         linear = -linear - 8;
00316     }
00317 
00318     /* Convert the scaled magnitude to segment number. */
00319     seg = top_bit(linear | 0xFF) - 7;
00320     if (seg >= 8)
00321     {
00322         if (linear >= 0)
00323         {
00324             /* Out of range. Return maximum value. */
00325             return (uint8_t) (0x7F ^ mask);
00326         }
00327         /* We must be just a tiny step below zero */
00328         return (uint8_t) (0x00 ^ mask);
00329     }
00330     /* Combine the sign, segment, and quantization bits. */
00331     return (uint8_t) (((seg << 4) | ((linear >> ((seg)  ?  (seg + 3)  :  4)) & 0x0F)) ^ mask);
00332 }
00333 /*- End of function --------------------------------------------------------*/
00334 
00335 /*! \brief Decode an A-law sample to a linear value.
00336     \param alaw The A-law sample to decode.
00337     \return The linear value.
00338 */
00339 static __inline__ int16_t alaw_to_linear(uint8_t alaw)
00340 {
00341     int i;
00342     int seg;
00343 
00344     alaw ^= ALAW_AMI_MASK;
00345     i = ((alaw & 0x0F) << 4);
00346     seg = (((int) alaw & 0x70) >> 4);
00347     if (seg)
00348         i = (i + 0x108) << (seg - 1);
00349     else
00350         i += 8;
00351     return (int16_t) ((alaw & 0x80)  ?  i  :  -i);
00352 }
00353 /*- End of function --------------------------------------------------------*/
00354 
00355 /*! \brief Transcode from A-law to u-law, using the procedure defined in G.711.
00356     \param alaw The A-law sample to transcode.
00357     \return The best matching u-law value.
00358 */
00359 uint8_t alaw_to_ulaw(uint8_t alaw);
00360 
00361 /*! \brief Transcode from u-law to A-law, using the procedure defined in G.711.
00362     \param alaw The u-law sample to transcode.
00363     \return The best matching A-law value.
00364 */
00365 uint8_t ulaw_to_alaw(uint8_t ulaw);
00366 
00367 #ifdef __cplusplus
00368 }
00369 #endif
00370 
00371 #endif
00372 /*- End of file ------------------------------------------------------------*/

Generated on Tue Oct 7 20:25:46 2008 for spandsp by  doxygen 1.5.6